

Teste Intermédio de Matemática A

Versão 1

Teste Intermédio

Matemática A

Versão 1

Duração do Teste: 90 minutos | 16.03.2012

10.º Ano de Escolaridade

Decreto-Lei n.º 74/2004, de 26 de março

RESOLUÇÃO

GRUPO I

1. Resposta (B)

As opções **(A)**, **(C)** e **(D)** devem ser excluídas, pois os pontos (1, 1, 2), (0, 1, 1) e (1, 1, 1) não pertencem a qualquer aresta do cubo porque o ponto (1, 1, 2) é o centro da face [STUV], o ponto (0, 1, 1) é o centro da face [ORST] e o ponto (1, 1, 1) é o centro do cubo.

A opção correta é a (B), porque o ponto (1, 2, 0) é o ponto médio da aresta [QR]

2. Resposta (C)

A reta t passa no ponto (-1, 2, 3) e é paralela ao eixo Oy

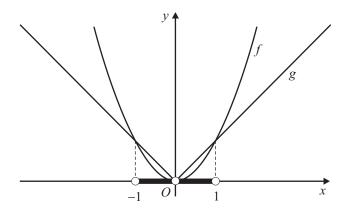
A opção (A) deve ser rejeitada, pois define uma reta paralela ao eixo Oz

A opção (B) deve ser rejeitada, pois define uma reta paralela ao eixo Ox

A opção (**D**) deve ser rejeitada, pois define o eixo Oy, que não passa no ponto (-1, 2, 3)

3. Resposta (A)

Na figura, estão representadas as funções f e g



Como se pode observar, $f(x) < g(x) \Leftrightarrow x \in]-1,0[\cup]0,1[$

4. Resposta (D)

As duas semirretas cuja união é o gráfico da função h têm origem no ponto de abcissa -1 e não no ponto de abcissa 0. Tal facto permite excluir as opções (A) e (B).

Na opção **(C)**, a imagem de $0 \in -1$. Tal facto permite excluir esta opção, pois, de acordo com o gráfico, h(0) = 1

5. Resposta (A)

Na opção **(B)**, só a segunda afirmação é verdadeira. Nas opções **(C)** e **(D)**, apenas a terceira afirmação é verdadeira.

GRUPO II

1.1. Como a reta r tem declive 2 e ordenada na origem -1, as coordenadas de um vetor diretor da reta r são (1,2) e as coordenadas de um ponto da reta são (0,-1)

Portanto, uma equação vetorial da reta r é: $(x, y) = (0, -1) + k(1, 2), k \in \mathbb{R}$

1.2. Seja s a reta paralela à reta r que passa no ponto A. A reta s tem declive s, pois é paralela à reta s, e tem ordenada na origem s, pois passa no ponto s

Portanto, a equação reduzida da reta s é: y = 2x - 2

1.3. A região representada a sombreado é limitada pela circunferência que tem centro no ponto A(0,-2) e raio 2, pelo eixo Oy e pela reta r

Uma condição que define esta região, incluindo a sua fronteira, é:

$$x^{2} + (y+2)^{2} \le 4 \land x \ge 0 \land y \le 2x-1$$

2.1. Este item pode ser resolvido por, pelo menos, dois processos.

1.º Processo

Como $\overline{AD} = 3 \,\mathrm{dm}$ e $\overline{ED} = 2 \,\overline{AE}$, conclui-se que $\overline{AE} = 1 \,\mathrm{dm}$ e $\overline{ED} = 2 \,\mathrm{dm}$

A área do quadrado [ABCD] é $9 \, \mathrm{dm^2}$ e a área dos quatro triângulos é $4 \times \frac{2 \times 1}{2} = 4 \, (\mathrm{dm^2})$

Portanto, a área do quadrado [EFGH] é $5 \, \mathrm{dm}^2$

2.º Processo

Como $\overline{AD} = 3 \,\mathrm{dm}$ e $\overline{ED} = 2 \,\overline{AE}$, conclui-se que $\overline{AE} = 1 \,\mathrm{dm}$ e $\overline{ED} = 2 \,\mathrm{dm}$

O triângulo [EDH] é retângulo, pelo que $\overline{EH}^2 = \overline{DH}^2 + \overline{ED}^2$

Como $\overline{DH} = \overline{AE} = 1 \, \text{dm}$ e $\overline{ED} = 2 \, \text{dm}$, $\overline{EH}^2 = 1 + 4 \Leftrightarrow \overline{EH} = \sqrt{5} \, (\text{dm})$

Portanto, a área do quadrado [EFGH] é $(\sqrt{5})^2 = 5(dm^2)$

2.2. As pirâmides de vértice V e bases [EFGH] e [IJKL] são semelhantes.

Como a área do quadrado [EFGH] é $5\,\mathrm{dm}^2$ e a área do quadrado [IJKL] é $45\,\mathrm{dm}^2$, e como $\frac{5}{45}=\frac{1}{9}=\frac{1}{3^2}$, concluímos que a pirâmide [EFGHV] é uma redução de razão $\frac{1}{3}$ da pirâmide [IJKLV]. Logo, a altura da pirâmide [EFGHV] é $\frac{1}{3}$ da altura da pirâmide [IJKLV], ou seja, $4\,\mathrm{dm}$

Assim, d = 12 - 4 = 8

Portanto, a distância, d, entre a peça metálica e a base da pirâmide é $8\,\mathrm{dm}$

3.1. Tem-se $D'_f = [-1, +\infty[$

Portanto, $D'_g =]-\infty, 1], \ D'_h = [2, +\infty[$ e $D'_j = [-1, +\infty[$

3.2. Como o gráfico da função f é uma parábola de vértice no ponto (2, -1), tem-se h = 2 e k = -1 Tem-se, então, $f(x) = a(x-2)^2 - 1$, sendo a um número real.

Como o ponto (0, 1) pertence ao gráfico da função f, tem-se

$$1 = a(0-2)^2 - 1 \Leftrightarrow 1 = 4a - 1 \Leftrightarrow 4a = 2 \Leftrightarrow a = \frac{1}{2}$$

Assim, h = 2, k = -1 e $a = \frac{1}{2}$

4.1. Para $x \in]-1,4[$, o quadrilátero [ABPQ] é um trapézio de base maior \overline{AB} , base menor \overline{QP} e altura \overline{QA}

Tem-se: $-2x + 8 = 0 \Leftrightarrow x = 4$. Portanto, $\overline{AB} = 4 + 1 = 5$

O ponto P tem abcissa x, logo, $\overline{QP} = \left| x - (-1) \right| = \left| x + 1 \right| = x + 1$ (para x > -1, tem-se x + 1 > 0)

O ponto \underline{P} tem ordenada -2x+8 e, como a ordenada do ponto \underline{Q} é igual à ordenada do ponto \underline{P} , tem-se $\overline{QA} = -2x+8$

Assim, a área do trapézio $\left[ABPQ\right]$ é dada, em função de x, por

$$S(x) = \frac{5+x+1}{2} \times (-2x+8) = \frac{-12x+48-2x^2+8x}{2} = \frac{-2x^2-4x+48}{2} = -x^2-2x+24$$

4.2. Uma condição que traduz o problema é:

$$-x^2 - 2x + 24 > 21 \land x \in]-1, 4[$$

Tem-se

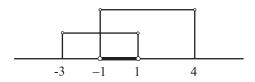
$$-x^2 - 2x + 24 > 21 \Leftrightarrow -x^2 - 2x + 24 - 21 > 0 \Leftrightarrow -x^2 - 2x + 3 > 0$$

Como
$$-x^2 - 2x + 3 = 0 \Leftrightarrow x = -3 \lor x = 1$$
, vem

$$-x^2 - 2x + 3 > 0 \Leftrightarrow -3 < x < 1$$

Então,

$$-x^2 - 2x + 24 > 21 \land x \in]-1, 4[\Leftrightarrow x \in]-3, 1[\cap]-1, 4[$$



Portanto, o conjunto dos valores de x para os quais a área do trapézio $\begin{bmatrix} ABPQ \end{bmatrix}$ é superior a $\begin{bmatrix} 21 \end{bmatrix}$ é $\begin{bmatrix} -1,1 \end{bmatrix}$