

TESTE INTERMÉDIO DE MATEMÁTICA

12.º Ano de Escolaridade

(Decreto-Lei n.º 74/2004, de 26 de Março)

Duração da Prova: **90 minutos** 15/Março/2007

VERSÃO 3

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação da prova.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete itens de escolha múltipla.
- O Grupo II inclui quatro itens de resposta aberta, alguns subdivididos em alíneas, num total de seis.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Losango:
$$\frac{Diagonal \, maior \times Diagonal \, menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Sector circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$
 $(r - raio da base; q - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \ = \ \sqrt[n]{\rho} \ \cos \frac{\theta + 2 \, k \, \pi}{n} \ , \ k \in \{0,..., \, n-1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1 + u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x o +\infty} rac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Grupo I

- As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- **1.** Seja Ω o espaço de resultados associado a uma certa experiência aleatória e sejam A e B dois acontecimentos $(A \subset \Omega \ \ e \ B \subset \Omega)$, ambos com probabilidade não nula. Sabe-se que $P(A \cup B) = P(A) + P(B)$

Qual é o valor da probabilidade condicionada P(A|B) ?

(A) P(A)

(B) $\frac{P(A)}{P(B)}$

(C) 0

- **(D)** 1
- **2.** Um saco contém vinte bolas, numeradas de 1 a 20.

Ao acaso, extraem-se simultaneamente três bolas do saco e anotam-se os respectivos números.

Qual é a probabilidade de o maior desses três números ser 10 ?

(A) $\frac{24}{^{20}C_3}$

(B) $\frac{28}{^{20}C_3}$

(C) $\frac{32}{^{20}C_3}$

(D) $\frac{36}{^{20}C_3}$

3. O Jorge tem seis moedas no bolso.

Ele retira, simultaneamente e ao acaso, duas dessas seis moedas.

Seja $\, X \,$ a quantia, em cêntimos, correspondente às duas moedas retiradas.

Sabe-se que a tabela de distribuição de probabilidades da variável aleatória $\,X\,$ é

x_i	20	30	40	60	70
$P(X=x_i)$	$\frac{3}{{}^{6}C_{2}}$	$\frac{6}{^{6}C_{2}}$	$\frac{1}{{}^{6}C_{2}}$	$\frac{3}{{}^{6}C_{2}}$	$\frac{2}{{}^{6}C_{2}}$

Quais poderiam ser as seis moedas que o Jorge tinha inicialmente no bolso?

(C)

(D)

- **4.** Indique o conjunto dos números reais que são soluções da inequação $e^{-x}>rac{1}{e}$
 - **(A)** $]-1, +\infty[$

(B) $]1, +\infty[$

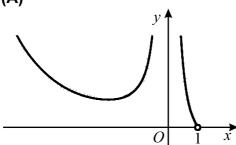
(C) $]-\infty,-1[$

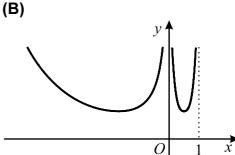
- **(D)** $]-\infty,1[$
- **5.** Seja a um número real maior do que 1. Indique o valor de $\log_a\left(a\times\sqrt[3]{a}\right)$
 - **(A)** $\frac{3}{2}$
- **(B)** $\frac{5}{3}$
- (C) $\frac{4}{3}$
- **(D)** $\frac{5}{4}$

6. Seja g uma função de domínio \mathbb{R}^+ Sabe-se que a recta de equação $\ y=2\,x+3\$ é assimptota do gráfico de $\ g$ Indique o valor de

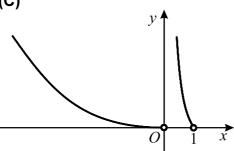
$$\lim_{x \to +\infty} \left[\frac{g(x)}{x} \times \left(g(x) - 2x \right) \right]$$

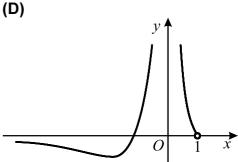
- **(A)** 0
- **(B)** 5
- **(C)** 6
- (D) $+\infty$


7. Na figura está representada, em referencial xOy, parte do gráfico de uma função f, de domínio $]-\infty,\,1\,[$, contínua em todo o seu domínio.


Tal como a figura sugere, tem-se:

- ullet o gráfico de f contém a origem do referencial;
- as rectas de equações y=0 e x=1são assimptotas do gráfico de f.


Em qual das opções seguintes poderá estar representada, em referencial xOy, parte do gráfico de $\frac{1}{f}$?



(C)

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exacto.

1. A acidez de uma solução é medida pelo valor do seu $\,pH_{}$, que é dado por

$$pH = -\log_{10}(x)$$

onde $\,x\,$ designa a concentração de iões $\,H_3O^+$, medida em $\,mol/dm^3$.

Sem recorrer à calculadora, a não ser para efectuar eventuais cálculos numéricos, resolva as duas alíneas seguintes:

1.1. Admita que o pH do sangue arterial humano é 7,4.

Qual é a concentração (em mol/dm^3) de iões H_3O^+ , no sangue arterial humano?

Escreva o resultado em notação científica, isto é, na forma $a \times 10^b$, com b inteiro e a entre 1 e 10. Apresente o valor de a arredondado às unidades.

1.2. A concentração de iões H_3O^+ no café é tripla da concentração de iões H_3O^+ no leite.

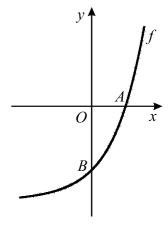
Qual é a diferença entre o $\,pH\,$ do leite e o $\,pH\,$ do café? Apresente o resultado arredondado às décimas.

Sugestão: comece por designar por l a concentração de iões H_3O^+ no leite e por exprimir, em função de l, a concentração de iões H_3O^+ no café.

2. Considere a função f, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} \frac{x^2 + 2x}{x^3 + x} & se \ x < 0 \\ 2 & se \ x = 0 \\ \frac{3x^2 - x \ln(x+1)}{x^2} & se \ x > 0 \end{cases}$$

($\ln \operatorname{designa} \operatorname{logaritmo} \operatorname{de} \operatorname{base} e$)


Utilizando métodos exclusivamente analíticos, averigúe se a função $\,f\,$ é contínua em $x=0.\,$ Justifique a sua resposta.

 $\textbf{3.} \hspace{0.3in} \text{Seja} \hspace{0.1in} c \hspace{0.1in} \text{um número real maior do que} \hspace{0.1in} 1.$

Na figura está representada uma parte do gráfico da função f, de domínio \mathbb{R} , definida por $f(x)=e^x-c$.

Tal como a figura sugere

- A é o ponto de intersecção do gráfico de f com o eixo Ox
- B é o ponto de intersecção do gráfico de f com o eixo Oy

Mostre que:

Se o declive da recta AB é c-1, então c=e

- **4.** Considere, num referencial o. n. xOy,
 - a curva $\,C$, que representa graficamente a função $\,f$, de domínio $\,[{\bf 0},{\bf 1}]\,,\,$ definida por $\,f(x)=e^x+3x\,$
 - a recta $\,r$, de equação $\,y=5\,$
 - **4.1.** Sem recorrer à calculadora, justifique que a recta $\, r \,$ intersecta a curva $\, C \,$ em pelo menos um ponto.
 - **4.2.** Recorrendo às capacidades gráficas da sua calculadora, visualize a curva C e a recta r, na janela $[0,1] \times [0,7]$ (janela em que $x \in [0,1]$ e $y \in [0,7]$).

Reproduza, na sua folha de teste, o referencial, a curva $\,\,C\,\,$ e a recta $\,\,r,\,$ visualizados na calculadora.

Assinale ainda os pontos O, P e Q, em que:

- O é a origem do referencial;
- P é o ponto de coordenadas (0, e);
- Q é o ponto de intersecção da curva $\ C$ com a recta $\ r$; relativamente a este ponto, indique, com duas casas decimais, a sua abcissa, que deve determinar com recurso à calculadora.

Desenhe o triângulo [OPQ] e **determine a sua área**. Apresente o resultado final arredondado às décimas. Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

FIM

COTAÇÕES

Ji upo i		6
	Cada resposta certa	9
	Cada resposta errada	0
	Cada questão não respondida ou anulada	0
Srupo	II	13
	1. 20 1.2. 22	42
	2	24
	3	24
	4.	47
	4.2. 24	